Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 57(9): 1177-1192.e6, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35504287

RESUMO

Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.


Assuntos
Oryza , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Água/metabolismo
3.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34010619

RESUMO

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Assuntos
Arabidopsis/genética , Genes de Plantas , Invenções , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/citologia , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Xilema/genética
4.
Science ; 365(6459): 1291-1295, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31604238

RESUMO

Flooding due to extreme weather threatens crops and ecosystems. To understand variation in gene regulatory networks activated by submergence, we conducted a high-resolution analysis of chromatin accessibility and gene expression at three scales of transcript control in four angiosperms, ranging from a dryland-adapted wild species to a wetland crop. The data define a cohort of conserved submergence-activated genes with signatures of overlapping cis regulation by four transcription factor families. Syntenic genes are more highly expressed than nonsyntenic genes, yet both can have the cis motifs and chromatin accessibility associated with submergence up-regulation. Whereas the flexible circuitry spans the eudicot-monocot divide, the frequency of specific cis motifs, extent of chromatin accessibility, and degree of submergence activation are more prevalent in the wetland crop and may have adaptive importance.


Assuntos
Evolução Biológica , Inundações , Redes Reguladoras de Genes , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sítios de Ligação , Cromatina/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/fisiologia , Família Multigênica , Oryza/fisiologia , Raízes de Plantas/fisiologia , Solanum/genética , Solanum/fisiologia , Estresse Fisiológico , Sintenia
5.
Bio Protoc ; 8(7): e2458, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34286007

RESUMO

Gene expression is dynamically regulated on many levels, including chromatin accessibility and transcription. In order to study these nuclear regulatory events, we describe our method to purify nuclei with Isolation of Nuclei in TAgged Cell Types (INTACT). As nuclear RNA is low in polyadenylated transcripts and conventional pulldown methods would not capture non-polyadenylated pre-mRNA, we also present our method to remove ribosomal RNA from the total nuclear RNA in preparation for nuclear RNA-Seq.

6.
Plant Physiol ; 176(1): 270-281, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28956755

RESUMO

Isolated nuclei provide access to early steps in gene regulation involving chromatin as well as transcript production and processing. Here, we describe transfer of the isolation of nuclei from tagged specific cell types (INTACT) to the monocot rice (Oryza sativa L.). The purification of biotinylated nuclei was redesigned by replacing the outer nuclear-envelope-targeting domain of the nuclear tagging fusion (NTF) protein with an outer nuclear-envelope-anchored domain. This modified NTF was combined with codon-optimized Escherichia coli BirA in a single T-DNA construct. We also developed inexpensive methods for INTACT, T-DNA insertion mapping, and profiling of the complete nuclear transcriptome, including a ribosomal RNA degradation procedure that minimizes pre-ribosomal RNA (pre-rRNA) transcripts. A high-resolution comparison of nuclear and steady-state poly(A)+ transcript populations of seedling root tips confirmed the capture of pre-messenger RNA (pre-mRNA) and exposed distinctions in diversity and abundance of the nuclear and total transcriptomes. This retooled INTACT can enable high-resolution monitoring of the nuclear transcriptome and chromatin in specific cell types of rice and other species.


Assuntos
Núcleo Celular/genética , Técnicas Citológicas/métodos , Transcriptoma/genética , Biotinilação , Proteínas de Fluorescência Verde/metabolismo , Meristema/metabolismo , Membrana Nuclear/metabolismo , Oryza/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
7.
Plant Cell ; 30(1): 15-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229750

RESUMO

The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell-type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell-type-specific transcriptomes during development.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Células Vegetais/metabolismo , Plantas/genética , Arabidopsis/genética , Sequência Conservada/genética , Solanum lycopersicum/genética , Medicago/genética , Meristema/genética , Oryza/genética , Epiderme Vegetal/citologia , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Transposases/metabolismo
8.
G3 (Bethesda) ; 7(1): 203-219, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27852012

RESUMO

Gene expression is controlled at transcriptional and post-transcriptional levels including decoding of messenger RNA (mRNA) into polypeptides via ribosome-mediated translation. Translational regulation has been intensively studied in the model dicot plant Arabidopsis thaliana, and in this study, we assessed the translational status [proportion of steady-state mRNA associated with ribosomes] of mRNAs by Translating Ribosome Affinity Purification followed by mRNA-sequencing (TRAP-seq) in rice (Oryza sativa), a model monocot plant and the most important food crop. A survey of three tissues found that most transcribed rice genes are translated whereas few transposable elements are associated with ribosomes. Genes with short and GC-rich coding regions are overrepresented in ribosome-associated mRNAs, suggesting that the GC-richness characteristic of coding sequences in grasses may be an adaptation that favors efficient translation. Transcripts with retained introns and extended 5' untranslated regions are underrepresented on ribosomes, and rice genes belonging to different evolutionary lineages exhibited differential enrichment on the ribosomes that was associated with GC content. Genes involved in photosynthesis and stress responses are preferentially associated with ribosomes, whereas genes in epigenetic regulation pathways are the least enriched on ribosomes. Such variation is more dramatic in rice than that in Arabidopsis and is correlated with the wide variation of GC content of transcripts in rice. Taken together, variation in the translation status of individual transcripts reflects important mechanisms of gene regulation, which may have a role in evolution and diversification.


Assuntos
Oryza/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Arabidopsis/genética , Composição de Bases/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência de RNA
9.
Cell ; 164(3): 345-6, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824650

RESUMO

The central vasculature of plant roots is protected by a hydrophobic ring of endodermal cells that are enclosed by lamellae of suberin. Barberon et al. demonstrate that endodermal suberization plasticity facilitates ion homeostasis, with antithetical regulation of suberin deposition and degradation by the phytohormones abscisic acid and ethylene.


Assuntos
Arabidopsis/fisiologia , Raízes de Plantas/fisiologia
10.
Proc Natl Acad Sci U S A ; 111(45): 16184-9, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25352666

RESUMO

Formation of specialized cells and tissues at defined times and in specific positions is essential for the development of multicellular organisms. Often this developmental precision is achieved through intercellular signaling networks, which establish patterns of differential gene expression and ultimately the specification of distinct cell fates. Here we address the question of how the Short-root (SHR) proteins from Arabidopsis thaliana (AtSHR), Brachypodium distachyon (BdSHR), and Oryza sativa (OsSHR1 and OsSHR2) function in patterning the root ground tissue. We find that all of the SHR proteins function as mobile signals in A. thaliana and all of the SHR homologs physically interact with the AtSHR binding protein, Scarecow (SCR). Unlike AtSHR, movement of the SHR homologs was not limited to the endodermis. Instead, the SHR proteins moved multiple cell layers and determined the number of cortex, not endodermal, cell layers formed in the root. Our results in A. thaliana are consistent with a mechanism by which the regulated movement of the SHR transcription factor determines the number of cortex cell layers produced in the roots of B. distachyon and O. sativa. These data also provide a new model for ground tissue patterning in A. thaliana in which the ability to form a functional endodermis is spatially limited independently of SHR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brachypodium/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brachypodium/genética , Oryza/genética , Fatores de Transcrição/genética
11.
Plant Physiol ; 166(2): 455-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24868032

RESUMO

Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.


Assuntos
Agrobacterium/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Raízes de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Plantas , Solanum lycopersicum/genética , Dados de Sequência Molecular , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico
12.
Gene Expr Patterns ; 13(5-6): 160-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23466806

RESUMO

In plants, MADS-box transcription factors are key regulators of floral and fruit development, organ dehiscence and stress responses. Nevertheless, the functions of most of them are still unknown. In Arabidopsis thaliana, the AGL17-like clade of MADS-box transcription factors comprises four members. AGL17 is involved in floral induction, whereas AGL44/ANR1 is involved in the adaptive development of roots in response to nitrate. AGL21 is primarily expressed in the roots and AGL16 in the leaves, suggesting that these transcription factors may be involved in the control of vegetative development. In Oryza sativa, the AGL17-like clade comprises five members, OsMADS23, OsMADS25, OsMADS27, OsMADS57 and OsMADS61. In a first attempt to characterize their functions, we used promoter::Gus reporter gene fusions and RT-qPCR to study the expression patterns of these genes and their regulation by different external stimuli. The OsMADS23, OsMADS25, OsMADS27 and OsMADS57 promoters were active in the root's central cylinder. In addition, the OsMADS57 promoter was active in leaves, whereas the OsMADS61 promoter was only active in the leaf tips and the stem base. OsMADS25 and OsMADS27 transcripts accumulated in response to osmotic stress, whereas the expression levels of OsMADS25, OsMADS27 and OsMADS57 were slightly induced by nitrate. Each of these five genes was responsive to various hormonal treatments. These distinct expression patterns indicate that these five genes have specific and non-redundant functions that likely differs from those of their A. thaliana homologs.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Oryza/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Domínio MADS/classificação , Proteínas de Domínio MADS/metabolismo , Pressão Osmótica , Filogenia , Homologia de Sequência de Aminoácidos
13.
Mol Plant ; 5(5): 974-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22628542

RESUMO

Plants adjust their development in relation to the availability of nutrient sources. This necessitates signaling between root and shoot. Aside from the well-known systemic signaling processes mediated by auxin, cytokinin, and sugars, new pathways involving carotenoid-derived hormones have recently been identified. The auxin-responsive MAX pathway controls shoot branching through the biosynthesis of strigolactone in the roots. The BYPASS1 gene affects the production of an as-yet unknown carotenoid-derived substance in roots that promotes shoot development. Novel local and systemic mechanisms that control adaptive root development in response to nitrogen and phosphorus starvation were recently discovered. Notably, the ability of the NITRATE TRANSPORTER 1.1 to transport auxin drew for the first time a functional link between auxin, root development, and nitrate availability in soil. The study of plant response to phosphorus starvation allowed the identification of a systemic mobile miRNA. Deciphering and integrating these signaling pathways at the whole-plant level provide a new perspective for understanding how plants regulate their development in response to environmental cues.


Assuntos
Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...